Robot learning from demonstration by constructing skill trees
نویسندگان
چکیده
We describe CST, an online algorithm for constructing skill trees from demonstration trajectories. CST segments a demonstration trajectory into a chain of component skills, where each skill has a goal and is assigned a suitable abstraction from an abstraction library. These properties permit skills to be improved efficiently using a policy learning algorithm. Chains from multiple demonstration trajectories are merged into a skill tree. We show that CST can be used to acquire skills from human demonstration in a dynamic continuous domain, and from both expert demonstration and learned control sequences on the uBot-5 mobile manipulator.
منابع مشابه
Constructing Skill Trees for Reinforcement Learning Agents from Demonstration Trajectories
We introduce CST, an algorithm for constructing skill trees from demonstration trajectories in continuous reinforcement learning domains. CST uses a changepoint detection method to segment each trajectory into a skill chain by detecting a change of appropriate abstraction, or that a segment is too complex to model as a single skill. The skill chains from each trajectory are then merged to form ...
متن کاملCST: Constructing Skill Trees by Demonstration
We describe recent work on CST, an online algorithm for constructing skill trees from demonstration trajectories. CST segments a demonstration trajectory into a chain of component skills, where each skill has a goal and is assigned a suitable abstraction from an abstraction library. These properties permit skills to be improved efficiently using a policy learning algorithm. Chains from multiple...
متن کاملImplementing Cst in Learning Layer of Csia for Higher Level of Intelligence
Development of cognitive architecture where the agents at different levels exhibit different levels of thinking. The paper primarily focus on building the skill tree at the learning layer of the architecture. These include the discovery of one’s own body, including its structure and dynamics. Also the acquisition of associated cognitive skills such as self and non-self-distinction. This can be ...
متن کاملSkill Learning and Inference Framework
We propose a skill learning and inference framework, which includes five processing modules as follows: 1) human demonstration process, 2) autonomous segmentation process, 3) process of learning dynamic movement primitives, 4) process of learning Bayesian networks, 5) process of constructing motivation graph and inferring skills. Based on the framework, the robot learns and infers situation-ade...
متن کاملTowards Robust Skill Generalization: Unifying Learning from Demonstration and Motion Planning
In this paper, we present Combined Learning from demonstration And Motion Planning (CLAMP) as an efficient approach to skill learning and generalizable skill reproduction. CLAMP combines the strengths of Learning from Demonstration (LfD) and motion planning into a unifying framework. We carry out probabilistic inference to find trajectories which are optimal with respect to a given skill and al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- I. J. Robotics Res.
دوره 31 شماره
صفحات -
تاریخ انتشار 2012